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An RRKM/master equation model is constructed for the isomerization of cyclopropene. It is shown how the
dense matrix of the master equation operator can be reduced to a banded form by a combination of diffusion
equation approximation and equation rearrangement. The lowest eigenvalues and eigenvectors of the master
equation, which are sufficient for simulation purposes, are rapidly found using shift and invert Lanczos based
methods.

1. Introduction

Isomerization is important in a number of gas phase processes.
For example, soot formation within combustion is thought to
proceed via a sequence of isomerization steps. The analysis of
gas phase isomerization is complicated by two major consid-
erations. The first is that the relaxation of such systems to
equilibrium is, in general, governed by more than one parameter.
The second is that these parameters can have a complex
dependence on pressure and temperature. Both of these
considerations are best tackled within the framework of uni-
molecular theory using master equation (ME) techniques.1-3 In
this paper the techniques are extended by introducing a fast
method based on the Lanczos algorithm for finding the lowest
eigenvalues and associated eigenvectors (eigenpairs) of the
diffusion equation (DE) approximation. This truncated model
is shown to be a valid approximation to the long term behavior
of the isomerization process.
To make the discussion more concrete, a model of the

cyclopropene isomerization to allene and propyne will be used.
This isomerization is thought to be important in the initiation
of soot formation via the production of the propargyl radicals,
which can then combine to form unsaturated C6 species that
can go on to form aromatic species. The details of the potential
energy surface are shown in Figure 1, where the values of the
barrier heights etc. are taken from the calculations of Karni et
al.4 For the present purposes only the central isomerizing system
will be considered in detail, i.e.,

The overall conversion of C2H2/1CH2 into C3H3/H will be treated
in a future publication.5

In section 2, the ME description of the system is presented
and the methods used to calculate state numbers,N(E), and
microcanoical rate coefficients,k(E), are described. Such a ME
description requires significant memory and processing power
and so an approximate approach, which is less demanding on
resources, is important, especially if large sequences of isomer-
izations are to be investigated. A DE approximation of the full
ME and a matrix rearrangement that gives a narrow banded
form are described in section 3. Then in section 4 the
calculation of the lowest eigenpairs with a shift and invert
Lanczos algorithm for the narrow banded DE approximation is
described. Results and conclusions are given in section 5.

2. Isomerization Master Equation

The isomerization ME equation has been described previously
by a number of workers,1,3,6,7 and so only a brief description
will be given here. For the simple isomerization reaction

the ME is written as two sets of coupled differential equations,
each set describing collisional activation/deactivation process
for an isomer, and these sets are also coupled to each other via
reactive terms describing the gain/loss of density due to reaction.
Representative equations from the two sets of equations have
the form
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whereFi
A andFl

B are the time dependent populations of states
of i and l of isomers A and B respectively,ω is the collision
frequency,Pij is the probability of going from statej to statei,
and theki

A and kl
B are the microcanonical rate coefficients

describing the reactive exchange between isomers. The states
i and l are isoenergetic.
Equations 3 cannot be solved as they stand because the

number of states is such that an enormous number of equations
would be required to describe the system. Following the
standard approach the energy of each isomer is partitioned into
grains and assigned a number of states with a mean energy and
mean rate coefficient parameters. The structure of the energy
grains reflects those of the original equations and are similar in
appearance to equations 3. Henceforth the discussion will focus
on the energy-grained ME (EGME).
The EGME can be more conveniently written in matrix form

The solution of this matrix differential equation is well-known
and can be written as an expansion in terms of the eigenvalues
and eigenvectors of the matrixM

whereλi andui are theith eigenpair ofM andci is a constant
that depends on the initial conditions. There is no overall loss
of density from the system, and so one of the eigenvalues must
be zero and the corresponding eigenvector must be equivalent
to the equilibrium distribution for the system. The remaining
eigenvalues are all negative. Provided that the barrier to
isomerization is large enough and the temperature of the system
low by comparison, it is found that one of the remaining,
negative eigenvalues is well separated from the rest in magni-
tude, and it this eigenvalue that governs the relaxation of the
system to equilibrium.
This analysis can be easily extended to systems where there

is more than one isomer and a similar expansion in terms of
eigenpairs can be performed. As before there is an eigenvalue

of zero, the corresponding eigenvector of which is the equilib-
rium eigenvector of the system. The remaining eigenvalues,
again, are all negative; however, it is found that more than one
eigenvalue, and as many asn - 1 eigenvalues wheren in the
number of isomers, is separated in magnitude from the rest and
that the relaxation to equilibrium is dictated by these eigenval-
ues.
The modeling of the relaxation of the system thus requires

the eigenvalues ofM to be determined. The difficulty here is
thatM can be a very large matrix, for example, if an energy
range of 50 000 cm-1 is required for each isomer and a
(relatively coarse) grain size of 200 cm-1 is used, then each
isomer is described by 250 grains leading to an overall matrix
of order 750. Such a matrix is difficult to manipulate on
workstations and even when it can be used the determination
of eigenvalues can be a very time-consuming process, an
important consideration when the focus of these calculations is
the fitting of reaction rate parameters, which requires the solution
of a series of matrix differential equations. These difficulties
are further exacerbated when larger systems of isomers are
considered as well as bimolecular source terms.
There is thus a requirement for a fast and efficient method

for dealing with such systems. The method described here is
extension of earlier work using diffusion models to describe
energy transfer discussed by Green et al.8 and applied by
Robertson et al.9 to the problem of two-dimensional ME, work
which has recently been extended by applying inverse iteration
techniques that could take advantage of the banded matrix form
produced by the diffusion approximation.10 Essentially, the
same approach can be applied to isomerizations systems and
allow further simplification of the matrixM that will be
described below.
Before this procedure can be applied the state numbers, mean

energies, and mean rate coefficients for the grains of each isomer
must be calculated. The density of states for each isomer were
calculated by executing a standard Beyer-Swinehart procedure
upon the classical rotational density of states of each isomer.
From this combined density of states, mean grain energies and
state numbers for 200 cm-1 grains were determined, using
standard averaging techniques.3 Mean microcanonical rate
coefficients were calculated using RRKM theory. The param-
eters required to calculate the density of states (vibrational
frequencies and geometries) and transition state parameters

Figure 1. Schematic diagram of the potential energy surface for the isomerization of the cyclopropene system.
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(barrier heights, vibrational frequencies, etc.) were taken from
Karni et al.4 The high-pressure rate coefficients were calculated
and compared with the Arrhenius forms quoted by Karni et al.
and found to be in good agreement.

3. Reduction to Narrow Banded Form

The structure of the matrix describing the system of eqs 1 is
shown schematically in Figure 2. It consists of three main
diagonal blocks that describe the collisional activation/deactiva-
tion process for each isomer. These blocks are connected by
diagonal and off-diagonal terms describing reactions that are
shown as bold diagonal lines in Figure 2. This matrix operates
on a vector that is formed by concatenating the vectors of the
grain populations of each isomer together. This configuration
of the matrix represents the most intuitive form, but as will be
shown shortly it is not the most efficient form.
The dense diagonal blocks can be simplified if a diffusion

approximation is used to describe energy transfer. The basis
of the diffusion approximation is the Kramers-Moyal11 expan-
sion of the ME. Other than at very short times this expansion
can be truncated after the second term giving the well-known
Fokker-Planck equation. If the linear operator describing
energy transfer is denotedL then the Fokker-Planck equation
gives

The momentsai(E) are given by

whereP(E′|E) is the kernel describing transfer between the
grains of given isomer. In this work the exponential down
model12 (also referred to as the exponential gap model13) is used
to describe the kernel, though any form could be used. The
first moment,a1(E), determines the drift of the mean of the
distribution and is most often denoted byµ(E). The width of
the distribution is determined bya2(E) and is usually denoted
σ2(E) or expressed in terms of the associated diffusion coef-
ficient D(E) ) σ2(E)/2. The difficulty with such a truncated
form for the operator is that at long times the population may
not go to a Boltzmann distribution. This situation may be
rectified if the diffusion coefficient,D(E), is modified so that a

Boltzmann distribution is produced at long timessthis constraint
leads to the so-called drift determine model discussed by Green
et al.8

The principal advantage of using the operatorL is the ease
with which it can be handled numerically. The numerical
representation, based on the same grain structure as used in the
ME, is a tridiagonal matrix which requires considerably less
storage space. In the isomerization problem the complete DE
matrix has a specific form, tridiagonal blocks and diagonal
blocks connecting the species. This form motivates a reordering
of the matrix by isoenergitic terms, creating a matrix with an
extremely narrow bandwidth equal to twice the number of
isomers plus one. For the present isomerization system, the
750 by 750 system can be reduced to a banded matrix of 750
by 7 and when symmetry is taken into account the actual storage
space required is only 750 by 4. It is important to realize that
this rearrangement does not alter either the physical nature of
the system or the eigenvalues obtained.
The narrow banded form produced in this way is ideally suited

to treatment by inverse iteration techniques such as those applied
previously to the problem of the two-dimensional ME. Since
a narrow banded matrix can be inverted at a cost related to the
bandwidth.

4. Shift and Invert Lanczos

The Lanczos method is an efficient procedure for ap-
proximating a subset of the eigensystem of a large sparse matrix
M . After k steps the standard Lanczos method computes a
factorization of the form

whereVk
TVk ) I andVk

Tf ) 0. Thek× k tridiagonal matrixTk

is an orthogonal projection ofM onto a particularKryloV
subspace, and the eigenvalues ofTk are referred to as Ritz values
or Ritz approximations. The eigenvalues of this small matrix
approximate a subset of the eigenvalues of the large matrixM .
It is well-known that Ritz values converge rapidly to well-
separated extreme eigenvalues. If the eigenvalues that are
desired are interior eigenvalues or if the extreme eigenvalues
are tightly clustered, spectral transformations may be necessary
to achieve reasonable convergence to these eigenvalues.14

In the isomerization problem only the lowest eigenvalues are
desired. The difficulty here is that the matrixM is exactly
singular. For the isomerization master equation it is the second
nonzero eigenvalue that governs the relaxation of the system
to equilibrium. In order to achieve fast convergence to the
subset of eigenvalues near zero, it is essential to first dampen
the influence of the higher eigenvalues.
The shift and invert spectral transformation is used to enhance

convergence to a desired portion of the spectrum.15 Given an
original problem

the transformed problem is of the form

This transformation is effective for finding eigenvalues nearσ
since the eigenvaluesθj of (M - σI )-1 that are largest in
magnitude correspond to the eigenvaluesλj of the original
problem that are nearest to the shiftσ in absolute value.
Since the transformed eigenvalues of largest magnitude are

often large and well separated, these eigenvalues are easy to

Figure 2. Schematic diagram of the structure of the collision matrix
describing the energy transfer and reaction for the isomerization system
given in eq 1.
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compute with a Lanczos method. Once found these eigenvalues
can be transformed back to the eigenvalues of the original
problem. The eigenvectorFj associated withθj in the trans-
formed problem is also an eigenvector of the original problem
corresponding toλj.
To implement this transformation, however, one must provide

a means to solve linear systems involving (M - σI ) either with
a matrix factorization or with an iterative method. The narrow
banded form of the rearranged isomerization matrix can be easily
factored without pivoting. Thus we can take advantage of the
fast convergence of Lanczos with minimal costs.
The software package ARPACK16 is used to solve the

eigenvalue problem. ARPACK is an implementation of the
Implicitly Restarted Arnoldi Method.17 For symmetric problems
a variant of this method, the Implicitly Restarted Lanczos
Method, is provided. Implicit restarting allows the problem to
be solved with a fixed predetermined amount of storage.

5. Results and Conclusions

As discussed above the time which it takes to calculate
eigenvalues is as equally important as the accuracy, as the
ultimate goal is to use these methods for the analysis of kinetic
data and the extraction of potential energy surface parameters.
Such fitting is conducted within the framework of nonlinear
least squares where the optimal parameters are found either by
gradient following techniques or by a simple grid search. Both
approaches can require the evaluation of eigenvalues a number
of times. Therefore for this approach to be practical the
evaluation must be done rapidly. It is thus far better to use a
fast approximate method to obtain initial estimates of the optimal
values and then refine them using more exacting methods if
the data and the model demand it.
The quality of the above approach was assessed in two

ways: through a comparison of the eigenvalues and by
comparing the populations of each isomer as a function of time
were calculated from a full ME and a DE model. Table 1 shows
a comparison of the first 10 eigenvalues and the approximate
time take to calculate them for 4 different approaches. The
conditions of Karni et al., a temperature of 1400 K and a
pressure of 104 Torr, were used. The full ME solution represents
the benchmark by which the other methods are compared in
both time and accuracy. From Table 1 it is seen that eigenvalues
decrease in magnitude on going down the column for the full
ME solution, the last eigenvalue being the effective zero
eigenvalue. The full ME was configured in block diagonal form
and diagonalized using routines from the EISPACK18 and
LAPACK19 program suites. In the third calculation, the ME
operators describing energy transfer were replaced by the
tridiagonal DE operators but the block configuration was
retained. This matrix was diagonalized using LAPACK. This

alteration produces no enhancement in speed; in fact it is slower,
despite the fact that there is a larger number of zero elements.
There is clearly a change in the eigenvalues; however, the
approximation is within 10% in most cases, though given the
span of eigenvalues this is perhaps not surprising. In the final
calculation the rearrangement procedure was used to create a
narrow banded matrix that could then be solved by the Lanczos
approach. The principal difference is in the speed of calculation,
which is in excess of a factor of 100 over the full solution.
A significant portion of the speed enhancement of the pivot/

Lanczos procedure is that only the lowest 10 eigenpairs are
calculated, and it is of interest to know what effect this has on
the populations of each isomer. Figure 3 shows a plot fo the
mole fractions of each isomer (obtained simply by summing
the elements of the population vector corresponding to each
isomer) as a function of time, for the full ME and the pivot/
Lanczos procedure. (The population vector for the system can
be obtained at anytime as an expansion in eigenpairs, see
Appendix 6 in ref 3.) The initial distribution was chosen so
that all the density was in the cyclopropene isomer and within
that isomer had a Boltzmann distribution so as to approximately
mimic the initial distribution that might be produced from the
reaction of1CH2 and C2H2. The full ME solution includes
contributions from all the eigenpairs of theM matrix, while
that of the pivot/Lanczos solution contains contributions from
only the lowest 10 eigenpairs (those whose eigenvalues are
smallest in magnitude). For times greater that 10-8 s agreement
between the two solutions is satisfactory. At shorter times the
two solutions diverge because contributions from the higher
eigenpairs are missing from the pivot/Lanczos solution. This
deficiency can be rectified if more eigenpairs are calculated
using the Lanczos procedure, though this will obviously increase

TABLE 1: Comparison of Eigenvalues Calculated Using Different Methods and Approximate Execution Times (UltraSparc)

Eispack/dense matrix Lapack/dense matrix Lapack/with diffusion operator Arpack/with diffusion operator, and rearrangement

-0.277 12× 109 -0.277 12× 109 -0.268 93× 109 -0.268 93× 109

-0.228 84× 109 -0.228 84× 109 -0.221 36× 109 -0.221 36× 109

-0.199 37× 109 -0.199 37× 109 -0.192 06× 109 -0.192 06× 109

-0.183 70× 109 -0.183 70× 109 -0.176 20× 109 -0.176 20× 109

-0.156 88× 109 -0.156 88× 109 -0.154 32× 109 -0.154 32× 109

-0.117 56× 109 -0.117 56× 109 -0.113 84× 109 -0.113 84× 109

-0.116 81× 109 -0.116 81× 109 -0.113 05× 109 -0.113 05× 109

-0.129 67× 107 -0.129 67× 107 -0.126 45× 107 -0.126 45× 107

-0.848 69× 103 -0.848 69× 103 -0.839 38× 103 -0.839 38× 103

0.589 91× 100 0.589 97× 100 0.589 91× 100 0.589 97× 100

Execution Time/s

1795.14 89.53 93.36 0.54

Figure 3. Time dependence of the mole fraction of each isomer at a
temperature of 1400 K and a pressure of 104 Torr.
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the amount of CPU time that will be required. The number of
eigenpairs that are required will depend on the time scale of
interest.
The above approach represents a significantly faster algorithm

for calculating eigenvalues for these kinetically important
systems with only a small reduction in accuracy. It is valid for
the range of conditions for which the ME is valid, a range which
includes the flame conditions where the reaction modeled here
occurs.
The principal aim of this paper has been to report techniques

of dealing with multiple isomerization. The details of the
cyclopropene system will be the subject of a future publication;
however, a few remarks about this isomerization can be made
at this point. It is evident from Figure 3 and the eigenvalue
spectrum that the relaxation to the equilibrium distribution is
nonexponential, confirming the earlier observation of Karni et
al. The immediate consequence of nonexponential relaxation
is that the system cannot be described by a single relaxation
rate coefficient, which has implications for modeling studies.
There are three distinct time regimes (10-10 and less, 10-10-
10-8, and 10-8-10-3 approximately), and it is interesting to
note that the population of propyne goes through a maximum
in the last interval, where the initial overpopulation of propyne,
due to the larger microcanonical rate coefficients, reverts to its
equilibrium value. This over population could potentially give
rise to nonthermal features in the formation of the propargyl
radical, even in the high-pressure limit, and is currently under
investigation.
For isomerization reactions where the pivot/Lanczos in not

appropriate, due to a divergence from the eigenpairs of the ME,
it is intended that the pivot/Lanczos approach will be used as a
starting point for more sophisticated eigenvalue algorithms. This
work is currently in progress.
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